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Abstract. A general formalism is developed that allows the construction of a field theory on quantum spaces
which are deformations of ordinary spacetime. The symmetry group of spacetime (the Poincaré group) is
replaced by a quantum group. This formalism is demonstrated for the κ-deformed Poincaré algebra and its
quantum space. The algebraic setting is mapped to the algebra of functions of commuting variables with
a suitable �-product. Fields are elements of this function algebra. The Dirac and Klein–Gordon equation
are defined and an action is found from which they can be derived.

1 Introduction

All experimental evidence supports the assumption that
spacetime forms a differential manifold. All successful fun-
damental theories are formulated as field theories on such
manifolds.

Nevertheless, in quantum field theories (QFT) we meet
some intrinsic difficulties at very high energies or very short
distances that do not seem to be resolvable in the frame-
work of QFT. It seems that the structure of QFT has to be
modified somewhere. We have no hints from experiments
where and how this should be done.

In a very early attempt – almost at the beginning of
QFT – it was suggested by Heisenberg [1] that spacetime
might be modified at very short distances by algebraic
properties that could lead to uncertainty relations for the
space coordinates.

This idea was worked out by Snyder [2] in a specific
model. He gave a very systematic analysis and physical
interpretation of such a structure. Pauli, in a letter to Bohr
[3] called it “a mathematically ingenious proposal, which,
however, seems to be a failure for reasons of physics”.

In the meantime experimental data for physics at much
shorter distances have become available. At the same time
mathematical methods have improved enormously and it
seems to be time to exploit the idea again.

a e-mail: dmarija@theorie.physik.uni-muenchen.de
b e-mail: larisa@theorie.physik.uni-muenchen.de
c e-mail: lmoeller@theorie.physik.uni-muenchen.de
d e-mail: frosso@theorie.physik.uni-muenchen.de
e e-mail: wess@theorie.physik.uni-muenchen.de
f e-mail: miw@theorie.physik.uni-muenchen.de

Inmathematics the concept of “deformation” has shown
to be extremely fruitful. Especially the deformation of
groups to Hopf algebras [4–7], the so-called quantum
groups, has opened a new field in mathematics. At the
same time the deformation of quantum mechanics [8] has
seen a very exciting development as well.

In this paper we try to bring these two concepts to-
gether aiming at a deformed field theory (DFT). It is not
a differential manifold on which we formulate such a the-
ory; it is rather formulated on a quantum space.

An example is the canonical quantum space, where the
coordinates x̂µ are subject to the relations

[x̂µ, x̂ν ] = θµν ,

with constant θµν . This structure has been investigated in
many papers (see e.g. [9] and the references in [10, 11]).
There is, however, no quantum group associated with this
quantum space.

We expect additional features of a field theory from
a quantum group that can be interpreted as a deforma-
tion of the Poincaré group. The simplest example is the
κ-deformed Poincaré algebra and its associated quantum
space. In this paper we treat the Euclidean version:

[x̂µ, x̂ν ] = i(aµx̂ν − aν x̂µ), µ = 1, . . . n.

The algebraic structure of the κ-deformed Poincaré al-
gebra has been investigated intensively; see e.g. [12–15].

In this paper we have systematically developed the ap-
proach starting from the coordinate algebra in the spirit
of Manin’s discussion of SUq(2) [16]. In this approach, the
coordinate algebra becomes a factor space and all maps on
this space have to respect the factorization property. We
then use the isomorphism of the abstract algebra with the
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algebra of functions of commuting variables equipped with
a �-product. In a series of papers by Lukierski et al. [17–19]
(see also [20]), this model has been treated with the meth-
ods of deformation quantization as well. Their work is very
similar to our approach.

In Sect. 2 we concentrate on the κ-deformed quantum
space in the algebraic setting. We define derivatives, gen-
erators of the deformed symmetry algebra, as well as Dirac
and Laplace operators, constructing the model systemati-
cally on the basis of the quantum space. All formulae are
worked out in full detail.

In Sect. 3 we map the algebraic setting into the frame-
work of deformation quantization, introducing a suitable
�-product.

In Sect. 4 we introduce fields that are going to be the
objects in a DFT. The Klein–Gordon equation and the
Dirac equation are formulated.

In Sect. 5 we introduce an integral for an action. Field
equations can then be derived by means of a variational
principle.

2 The algebra

The symmetry structure of κ-Minkowski spacetime is an
example of a quantum group (Hopf algebra) that acts on a
quantum space (module). Our aim is to construct quantum
field theories with themethods of deformation quantization
on such a quantum space and to study the implications of
a quantum group symmetry on these field theories.

For this purpose we start from the quantum space and
the relations that define it.

Coordinate space

The coordinate space will be the factor space of the algebra
freely generated by the coordinates x̂1 . . . x̂n, divided by
the ideal generated by commutation relations [16, 21, 22].
For the κ-Minkowski space the relations are of the Lie
algebra-type1

[x̂µ, x̂ν ] = i(aµx̂ν − aν x̂µ), µ = 1, . . . , n. (1)

The real parameters aµ play the role of structure constants
for the Lie algebra:

[x̂µ, x̂ν ] = iCµν
ρ x̂ρ, Cµν

ρ = aµδν
ρ − aνδµ

ρ . (2)

We here study the Euclidean version. The generaliza-
tion to a Poincaré version is straightforward, with the di-
rection n (see (3)) either space-, time- or light-like2. In the
Euclidean case aµ can be transformed by a linear trans-
formation of the coordinates (rotation) to the form

aµ = δµna. (3)
1 The deformation parameter aµ is related to the more com-

mon κ through
√

a2 = κ−1

2 Compare [19,23,24]

The vector aµ points into the n direction. In this form it
is easier to analyse the relations (1); they are

[
x̂i, x̂j

]
= 0,

[
x̂n, x̂i

]
= iax̂i, i, j = 1, . . . n− 1. (4)

SOa(n) rotations

A map of the coordinate space has to respect the factor
space structure, or, as we say, it has to be consistent with
the relations (cf. [16, 21]). Generators of such maps are

[
Mrs, x̂i

]
= δrix̂s − δsix̂r,

[Mrs, x̂n] = 0,[
N l, x̂i

]
= −δlix̂n − iaM li, (5)

[
N l, x̂n

]
= x̂l + iaN l.

We shall call Mrs and N l = Mnl generators of SOa(n),
because for a = 0 we find the generators of the rotation
group SO(n). For a �= 0 we have to check the consistency
of (4) and (5). Since this type of calculations will appear
again and again, we exhibit an example. We calculate

N l
([
x̂n, x̂i

] − iax̂i
)

(6)

term by term using (5):

N lx̂nx̂i = x̂lx̂i − ia(δilx̂n + iaM li) + iax̂iN l

−δilx̂nx̂n − iax̂nM li + x̂nx̂iN l,

N lx̂ix̂n = −δilx̂nx̂n − iax̂nM li + x̂ix̂l

+iax̂iN l + x̂ix̂nN l,

N l(−iax̂i) = ia(δilx̂n + iaM li − x̂iN l).

Adding all this we find

N l
([
x̂n, x̂i

] − iax̂i
)
=

([
x̂n, x̂i

] − iax̂i
)
N l. (7)

The consistency of the N l operations with (one of) the
relations (4) is verified.

If we now define the map

x̂′µ = x̂µ + εl

(
N lx̂µ

)
, (8)

we find to first order in ε[
x̂′n, x̂′i] = iax̂′i,

[
x̂′i, x̂′j] = 0. (9)

The algebra generated by the rotations is a deformation
of the Lie algebra SO(n); we shall call it SOa(n).

From (5) it is possible to compute the commutators of
the generators. As a possible solution (this was considered
specifically in [14]) we find the undeformed SO(n) algebra

[
N l, Nk

]
= M lk,
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[
Mrs, N l

]
= δrlNs − δslNr, (10)

[
Mrs,Mkl

]
= δslMrk + δrkMsl − δrlMsk − δskMrl.

But the comultiplication will turn out to be quite different
when the generators act on functions of x̂. This is already
apparent from (5). An explicit expression for the comulti-
plication will contain derivatives as well. Thus, we define
derivatives next.

Derivatives

Derivatives on an algebra have been introduced in [21].
They generate a map in the coordinate space – elements
of the coordinate space are mapped to other elements of
the coordinate space. Thus, they have to be consistent with
the algebra relations. For a = 0 they should behave like
ordinary derivatives, for a �= 0 the Leibniz rule has to be
generalized to achieve consistency [21].

We also demand that the derivatives form a module
for SOa(n). In addition they should act at most linearly
in the coordinates and the derivatives. These requirements
are satisfied by the following rules for differentiation:

[
∂̂n, x̂

i
]
= 0,

[
∂̂n, x̂

n
]
= 1,

[
∂̂i, x̂

j
]
= δj

i , (11)
[
∂̂i, x̂

n
]
= ia∂̂i

and

[
∂̂µ, ∂̂ν

]
= 0. (12)

The requirement of linearity has been added in order to get
an (almost) unique solution [25, 26, 35]. It is not essential
for the definition of derivatives.

We can apply derivatives to a function of x̂µ and take
the derivatives to the right hand side of this function using
(11). For the ∂̂n this yields the usual Leibniz rule; for the
∂̂i we find that x̂n is shifted by ia. This can be expressed by
the shift operator eia∂̂n . Note that ∂̂n commutes with x̂i.

We obtain the Leibniz rule:

∂̂n(f̂ · ĝ) = (∂̂nf̂) · ĝ + f̂ · ∂̂nĝ,

∂̂i(f̂ · ĝ) = (∂̂if̂) · ĝ + (eia∂̂n f̂) · ∂̂iĝ. (13)

Next we construct commutators of the generators of
SOa(n) with the derivatives such that these form amodule.
For this purpose we perform a power series expansion in
a. At lowest order we start from a vector-like behavior of
∂̂µ. In first order in a we have to modify the commutator

to be consistent with (10) and (11). This procedure has to
be repeated; finally we find

[
Mrs, ∂̂i

]
= δr

i ∂̂s − δs
i ∂̂r,

[
Mrs, ∂̂n

]
= 0,

[
N l, ∂̂i

]
= δl

i

1− e2ia∂̂n

2ia
− ia

2
δl
i∆̂+ ia∂̂l∂̂i, (14)

[
N l, ∂̂n

]
= ∂̂l,

where ∆̂ =
∑n−1

i=1 ∂̂i∂̂i. Equations (14) are valid to all or-
ders in a. By a direct construction we have shown that the
derivatives form a module of SOa(n).

We can applyMrs and N l to a function of x̂µ and take
the generators to the right hand side. From the result of
this calculation we can abstract the comultiplication rule:

∆N l = N l ⊗ 1+ eia∂̂n ⊗N l − ia∂̂b ⊗M lb,

∆Mrs = Mrs ⊗ 1+ 1 ⊗Mrs,

∆∂̂n = ∂̂n ⊗ 1+ 1 ⊗ ∂̂n, (15)

∆∂̂i = ∂̂i ⊗ 1+ eia∂̂n ⊗ ∂̂i.

This is the comultiplication consistent with the algebra
(10). It is certainly different from the comultiplication rule
for SO(n).

The comultiplication involves the derivatives. For rep-
resentations of the algebra (10), where ∂̂µ acting on the
representation gives zero, the standard comultiplication
rule for SO(n) emerges.

As far as the commutators of Mrs and N l with the
coordinates and the derivatives are concerned, we can ex-
press Mrs and N l by the coordinates and the derivatives,
as is usually done for angular momentum:

M̂rs = x̂s∂̂r − x̂r∂̂s,

N̂ l = x̂l e
2ia∂̂n − 1
2ia

− x̂n∂̂l +
ia
2
x̂l∆̂. (16)

According to (15), it is natural to consider the genera-
torsMrs, N l and ∂̂µ as generators of the a-Euclidean Hopf
algebra. It should be noted that the deformed generators
Mrs, N l do not form a Hopf algebra by themselves. In the
coproduct the derivatives, or equivalently the translations
in the a-Euclidean Hopf algebra, appear as well.

Laplace and Dirac operators

A deformed Laplace operator [12,13] and a deformed Dirac
operator [29,30] can be defined. For the Laplace operator
✷̂ we demand that it commutes with the generators of the
a-Euclidean Hopf algebra,

[
Mrs, ✷̂

]
= 0,

[
N l, ✷̂

]
= 0, (17)
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and that it is a deformation of the usual Laplace operator.
By iteration in a we find3:

✷̂ = e−ia∂̂n∆̂+
2
a2 (1− cos(a∂̂n)). (18)

Since the γ-matrices are x̂-independent and transform
as usual, the covariance of the full Dirac operator γµD̂µ

implies that the transformation law of its components is
vector-like: [

Mrs, D̂n

]
= 0,

[
Mrs, D̂i

]
= δr

i D̂s − δs
i D̂r,

[
N l, D̂n

]
= D̂l, (19)

[
N l, D̂i

]
= −δl

iD̂n.

These relations are obviously consistent with the algebra
(10). A differential operator that satisfies (19) and that
has the correct limit for a → 0 is

D̂n =
1
a
sin

(
a∂̂n

)
+

ia
2
∆̂ e−ia∂̂n ,

D̂i = ∂̂ie−ia∂̂n , (20)

where the derivatives ∂̂µ transform according to (14).
The square of the Dirac operator turns out to be (com-

pare [29])

γµD̂µγ
νD̂ν =

n∑
µ=1

D̂µD̂µ = ✷̂

(
1− a2

4
✷̂

)
. (21)

Using this we can express the Laplace operator as a function
of the Dirac operator:

✷̂ =
2
a2

(
1−

√
1− a2D̂µD̂µ

)
. (22)

The sign of the square root is determined by the limit
a → 0. We have dropped the summation symbol.

Dirac operator as a derivative

The Dirac operator D̂µ can be seen as a derivative operator
as well, having very simple transformation properties under
SOa(n), but as we shall see with a highly non-linear Leibniz
rule.

We invert (20) in order to express the derivative op-
erator ∂̂µ in terms of the Dirac operator and proceed as
follows:

∂̂i = D̂ieia∂̂n ,

∂̂i∂̂i = ∆̂ = D̂iD̂ie2ia∂̂n ,

3 In this form the Laplace operator has been given in [15]

D̂n =
1
2ia

(eia∂̂n − e−ia∂̂n) +
ia
2
D̂iD̂ieia∂̂n . (23)

Multiplying (23) by e−ia∂̂n leads to a quadratic equation
for e−ia∂̂n :

e−2ia∂̂n + 2iaD̂ne−ia∂̂n + a2D̂iD̂i − 1 = 0.

Solving this quadratic equation we find (compare [32])

e−ia∂̂n = −iaD̂n +
√
1− a2D̂µD̂µ. (24)

The sign of the square root is again determined by the
limit a → 0.

With (22) we find a form that is easier to handle:

e−ia∂̂n = 1− iaD̂n − a2

2
✷̂. (25)

Multiplying (23) by eia∂̂n we find a quadratic equation
for eia∂̂n with the solution

eia∂̂n =
1

1− a2D̂kD̂k

(
iaD̂n +

√
1− a2D̂µD̂µ

)

=
1

1− a2D̂kD̂k

(
1 + iaD̂n − a2

2
✷̂

)
. (26)

It is easy to verify that (26) is the inverse of (24).
Now we can invert (20):

∂̂i =
D̂i

1− a2D̂kD̂k

(
iaD̂n +

√
1− a2D̂µD̂µ

)

=
D̂i

1− a2D̂kD̂k

(
1 + iaD̂n − a2

2
✷̂

)
, (27)

∂̂n = − 1
ia
ln

(
−iaD̂n +

√
1− a2D̂µD̂µ

)

= − 1
ia
ln

(
1− iaD̂n − a2

2
✷̂

)
.

To compute the commutator of D̂µ and x̂ν , we use the
representation (20), apply (11) and finally express ∂̂µ again
by D̂µ using (27). The result is

[
D̂n, x̂

j
]
= iaD̂j ,

[
D̂n, x̂

n
]
=

√
1− a2D̂µD̂µ,

[
D̂i, x̂

j
]
= δj

i

(
−iaD̂n +

√
1− a2D̂µD̂µ

)
, (28)

[
D̂i, x̂

n
]
= 0.

For two functions f̂(x̂) and ĝ(x̂) the Leibniz rule can
be computed from (28):

D̂n(f̂ · ĝ) = (D̂nf̂) · (e−ia∂̂n ĝ) + (eia∂̂n f̂) · (D̂nĝ)
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+ia(D̂jeia∂̂n f̂) · (D̂j ĝ),

D̂i(f̂ · ĝ) = (D̂if̂) · (e−ia∂̂n ĝ) + f̂ · (D̂iĝ). (29)

For e±ia∂̂n the expressions (24) and (26) have to be inserted.
Equation (20) tells us that the Dirac operator D̂µ is

in the enveloping algebra of ∂̂µ and (27) that the deriva-
tive operator ∂̂µ is in the enveloping algebra of D̂µ. Equa-
tions (20) and (27) can be interpreted as a change of basis
in the derivative algebra (compare [32]).

One basis {D̂µ} has simple transformation properties;
the other basis {∂̂µ} has a simple Leibniz rule.

The a-Euclidean Hopf algebra might also be generated
by Mrs, N l and D̂µ. This will be of advantage if we focus
on the SOa(n) behavior:

[
Mrs,M tu

]
= δrtMsu + δsuMrt − δstMru − δruMst,[

Mrs, N l
]
= δrlNs − δslNr,

[
Nk, N l

]
= Mkl, (30)

[
Mrs, D̂n

]
= 0,

[
Mrs, D̂i

]
= δriD̂s − δsiD̂r,

[
N l, D̂n

]
= D̂l,

[
N l, D̂i

]
= −δliD̂n,

[
D̂µ, D̂ν

]
= 0.

This again is the undeformed algebra – a does not appear.
Of course, the comultiplication in this basis depends on a:

∆Mrs = Mrs ⊗ 1+ 1 ⊗Mrs,

∆N l = N l ⊗ 1+
iaD̂n +

√
1− a2D̂µD̂µ

1− a2D̂jD̂j

⊗N l

− iaD̂k

1− a2D̂jD̂j

(
iaD̂n +

√
1− a2D̂µD̂µ

)
⊗M lk,

∆D̂n = D̂n ⊗
(

−iaD̂n +
√
1− a2D̂µD̂µ

)

+
iaD̂n +

√
1− a2D̂µD̂µ

1− a2D̂jD̂j

⊗ D̂n (31)

+ia
D̂k

1− a2D̂jD̂j

(
iaD̂n +

√
1− a2D̂µD̂µ

)
⊗D̂k,

∆D̂i = D̂i ⊗
(

−iaD̂n +
√
1− a2D̂µD̂µ

)
+ 1 ⊗ D̂i.

To define a Hopf algebra, multiplication and comultiplica-
tion are essential4.

Conjugation

All the relations that we have considered do not change
under the formal involution that we shall call conjugation:

(x̂µ)+ = x̂µ, (∂̂µ)+ = −∂̂µ,

(Mrs)+ = −Mrs, (N l)+ = −N l. (32)

The order of algebraic elements in the product has to be
inverted under conjugation.

It is easy to show that N̂ l and M̂rs in (16) have the
desired conjugation property by conjugating x̂µ and ∂̂µ.

3 The �-product

Our aim is to formulate a field theory on the algebra dis-
cussed in the previous section with the methods of de-
formation quantization. The algebraic formalism is con-
nected with deformation quantization via the �-product.
The idea in short is as follows. We consider polynomials
of fixed degree in the algebra – homogeneous polynomi-
als. They form a finite-dimensional vector space. If the
algebra has the Poincaré–Birkhoff–Witt property, and all
Lie algebras have this property, then the dimension of the
vector space of homogeneous polynomials in the algebra is
the same as for polynomials of commuting variables. Thus,
there is an isomorphism between the two finite-dimensional
vector spaces. This vector space isomorphism can be ex-
tended to an algebra isomorphism by defining the product
of polynomials of commuting variables by first mapping
these polynomials back to the algebra, multiplying them
there and mapping the product to the space of polynomi-
als of ordinary variables. The product we obtain that way
is called a �-product. It is non-commutative and contains
the information about the product in the algebra. The ob-
jects that we will identify with physical fields are functions.
This is possible because the �-product of polynomials can
be extended to the �-product of functions.

The �-product for Lie algebras

There is a standard �-product for Lie algebras [34]. If x̂µ

are the generators of a Lie algebra such that

[x̂µ, x̂ν ] = iCµν
ρ x̂ρ, (33)

then a �-product can be computed with the help of the
Baker–Campbell–Hausdorff formula:

eix̂
νpν eix̂

νqν = eix̂
ν{pν+qν+ 1

2 gν(p,q)}. (34)
4 The additional ingredients for a Hopf algebra, counit and

antipode, have been calculated, e.g. [27]
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The exponential, when expanded, is always fully symmet-
ric in the algebraic elements x̂ν . Therefore we call this
�-product the symmetric �-product. In the following we
shall use the symmetric �-product. It is

f � g(z) = lim
x→z
y→z

exp
(
i
2
zνgν(i∂x, i∂y)

)
f(x)g(y). (35)

It can be applied to any Lie algebra, but in general
there is no closed form for gν(i∂x, i∂y). It can, however,
be computed in a power series expansion in the structure
constants Cµν

ρ . We obtain

[xµ �, xν ] = xµ � xν − xν � xµ = iCµν
ρ xρ. (36)

All the consequences of the algebraic relation (33) can be
derived from the �-product.

If the algebra allows for a conjugation, then the sym-
metric �-product has the property

f � g = ḡ � f̄ . (37)

The bar denotes complex conjugation.
We have found a closed form for the symmetric �-

product for the algebra (4) [35] (compare [18]). Using the
abbreviations

∂xn =
∂

∂xn
, ∂yn =

∂

∂yn
, ∂n =

∂

∂xn
+

∂

∂yn
, (38)

the �-product takes the form

f � g(z)

= lim
x→z
y→z

exp
(
zj∂xj

(
∂n

∂xn

e−ia∂yn 1− e−ia∂xn

1− e−ia∂n
− 1

)

+zj∂yj

(
∂n

∂yn

1− e−ia∂yn

1− e−ia∂n
− 1

))
f(x)g(y). (39)

To second order in a we obtain

f � g (x) = f(x)g(x) +
ia
2
xj(∂nf(x)∂jg(x) (40)

−∂jf(x)∂ng(x))− a2

12
xj(∂2

nf(x)∂jg(x)

−∂j∂nf(x)∂ng(x)− ∂nf(x)∂j∂ng(x) + ∂jf(x)∂2
ng(x))

−a2

8
xjxk(∂2

nf(x)∂j∂kg(x)− 2∂j∂nf(x)∂n∂kg(x)

+∂j∂kf(x)∂2
ng(x)) +O(a3).

The a-Euclidean Hopf algebra and the �-product

The operators ∂̂µ, Mrs and N l generate transformations
on the coordinate space. In a standard way maps in the
coordinate space can be mapped to maps of the space of
functions of commuting variables.

We first consider the derivatives

∂̂µ → ∂∗
µ, (41)

where ∂∗
µ is the image of the algebraic map ∂̂µ, and as such

it is a map of the space of functions of commuting variables
into itself. In the following, the derivatives ∂µ will always
be the ordinary derivatives ∂

∂xµ on functions of commuting
variables. Such mappings have previously been discussed
in [13,17,28].

From the action of ∂̂µ on symmetric polynomials we
can compute the action of ∂∗

µ on ordinary functions5:

∂∗
nf(x) = ∂nf(x), (42)

∂∗
i f(x) = ∂i

eia∂n − 1
ia∂n

f(x).

The derivatives have inherited the Leibniz rule (13):

∂∗
n(f � g(x)) = (∂∗

nf(x)) � g(x) + f(x) ∗ (∂∗
ng(x)) ,

∂∗
i (f � g(x)) = (∂∗

i f(x)) � g(x)

+(eia∂∗
nf(x)) � (∂∗

i g(x)) . (43)

We proceed in an analogous way for the generatorsMrs

and N l. The result is (cf. the momentum representation
in e.g. [13, 19])

N∗lf(x) =
(
xl∂n − xn∂l + xl∂µ∂µ

eia∂n − 1
2∂n

− xν∂ν∂l
eia∂n − 1− ia∂n

ia∂2
n

)
f(x),

M∗rsf(x) = (xs∂r − xr∂s) f(x). (44)

The comultiplication rule (15) can be reproduced as well:

N∗l (f � g(x))

=
(
N∗lf(x)

)
� g(x) +

(
eia∂∗

nf(x)
)
�

(
N∗lg(x)

)

−ia (∂∗
b f(x)) �

(
M∗lbg(x)

)
, (45)

M∗rs (f � g(x))

= (M∗rsf(x)) � g(x) + f(x) � (M∗rsg(x)).

The algebra of functions with the �-product as multipli-
cation can now be seen as a module for the a-Euclidean
Hopf algebra.

In the previous chapter we have seen that the Dirac
operator D̂µ can be interpreted as a derivative as well. It
is natural to carry it over to the algebra of functions with
the �-product:

D∗
nf(x) =

(
1
a
sin(a∂n) +

∆cl

ia∂2
n

(cos(a∂n)− 1)
)
f(x),

5 In this form first given in [31]
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D∗
i f(x) = ∂i

e−ia∂n − 1
−ia∂n

f(x), (46)

where ∆cl = ∂i∂i. The Leibniz rule for the Dirac operator
is

D∗
n(f � g(x)) = (D∗

nf(x)) � (e
−ia∂∗

ng(x))

+(eia∂∗
nf(x)) � (D∗

ng(x)) (47)

+ia
(
D∗

j e
ia∂∗

nf(x)
)
� (D∗

j g(x)),

D∗
i (f � g(x)) = (D∗

i f(x)) � (e
−ia∂∗

ng(x))

+f(x) � (D∗
i g(x)).

Finally, for the Laplace operator ✷̂ we have

(�∗f(x)) = − 2
a2∂2

n

(cos(a∂n)− 1)
(
∆cl + ∂2

n

)
f(x). (48)

4 Field equations

Fields

Physical fields are formal power series expansions in the
coordinates and as such elements of the coordinate algebra:

φ̂(x̂) =
∑
{α}

cα1...αn
: (x̂1)α1 . . . (x̂n)αn : . (49)

The summation is over a basis in the coordinate algebra
as indicated by the double points. The field can also be
defined by its coefficient functions c{α1...αn}, once the basis
is specified.

Fields can be added, multiplied, differentiated and
transformed. A transformation is a map in the algebra
and as such can be seen as a map of the coefficient func-
tions. We are interested in the maps that are induced by
the transformations Nl:

x̂′µ = x̂µ + εl

(
N lx̂µ

)
. (50)

The action of N l on the coordinates was given in (5). This
expresses the transformed coordinate x̂′ in terms of the
coordinates x̂.

The transformation law of a scalar field is defined as
usual:

φ̂′(x̂′) = φ̂(x̂). (51)

This should be seen as an identity in x̂ or x̂′. We write it
in the given basis:

φ̂′(x̂′) = ∑
{α}

c′α1...αn
:
(
x̂′1)α1

. . .
(
x̂′n)αn : (52)

=
∑
{α}

c′α1...αn
:
(
x̂1 + εl

(
N lx̂1

))α1

. . .
(
x̂n + εl

(
N lx̂n

))αn

:

=
∑
{β}

cβ1...βn
:
(
x̂1)β1

. . . (x̂n)βn : .

This allows us to compute cβ1...βn
as a function of c′α1...αn

or vice versa.
Spinor fields are defined analogously:

ψ̂′
σ

(
x̂′) = (

1 + εlN
l
rep

)
σρ
ψ̂ρ (x̂) , (53)

where N l
rep is a representation of N l acting on coordinate

independent spinors. The generalization to vector fields or
tensor fields is obvious.

These transformation laws have to be formulated in the
�-product language; equation (51) becomes

φ′(x′(x)) = φ(x), (54)

or, transforming the coordinates,

φ′(x) = φ(x)− εlN
∗lφ(x), (55)

where N∗l operates on the coordinates.
The generalization to the operators M∗rs and ∂∗

µ is
straightforward.

Field equations

We introduce the a-deformed Klein–Gordon equation for
scalar fields (

�̂+m2
)
φ̂(x̂) = 0. (56)

The invariance of this equation follows from (17) and (51):(
�̂′ +m2

)
φ̂′(x̂′) =

(
�̂+m2

)
φ̂(x̂). (57)

Similarly the a-deformed Dirac equation(
iγλD̂λ −m

)
ψ̂(x̂) = 0 (58)

is covariant:(
iγλD̂′

λ −m
)
ψ̂′(x̂′) = (1 + εlN

l
rep)

(
iγλD̂λ −m

)
ψ̂(x̂).
(59)

These equations take the following form in the �-formalism:(
�∗ +m2)φ(x) (60)

=
(

− 2
a2∂2

n

(cos(a∂n)− 1)
(
∆cl + ∂2

n

)
+m2

)
φ(x)

and (
iγλD∗

λ −m
)
ψ(x)

=
(
γn

(
i
a
sin(a∂n) +

∆cl

a∂2
n

(cos(a∂n)− 1)
)

+iγj∂j
e−ia∂n − 1

−ia∂n
−m

)
ψ(x). (61)

We have defined the a-deformed Klein–Gordon and
Dirac equation for fields that are functions of the commut-
ing variables and have to be multiplied with the �-product.
These equations are covariant under the a-Euclidean trans-
formations.
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5 The variational principle

We will derive field equations by means of a variational
principle such that the dynamics can be formulated with
the help of the Lagrangian formalism. For this purpose we
need an integral. Algebraically an integral is a linear map
of the algebra into complex numbers:

∫
: Â(x̂) −→ C, (62)

∫
(c1f̂ + c2ĝ) = c1

∫
f̂ + c2

∫
ĝ,

∀f̂ , ĝ ∈ Â(x̂), ci ∈ C. (63)

In addition we demand the trace property:
∫

f̂ ĝ =
∫

ĝf̂ . (64)

In our case this is essential to define the variational prin-
ciple. To find a workable definition of such an integral we
will try to define it in the �-product formalism. There we
can use the usual definition of an integral of functions of
commuting variables. Such an integral will certainly have
the linear property (63), but in general it will not have the
trace property (64). It has, however, been shown in [33] that
a measure can be introduced to achieve the trace property:

∫
dnx µ(x) (f(x) � g(x)) =

∫
dnx µ(x) (g(x) � f(x)).

(65)
Note that µ(x) is not �-multiplied with the other functions;
it is part of the volume element.

It turns out that for the �-product (39) and µ(x) with
the property

∂nµ(x) = 0, xj∂jµ(x) = (1− n)µ(x), (66)

equation (65) will be true. This was shown to first order
in a [33], but it can be generalized to the full �-product
(39) [35].

Technically µ(x) is needed because zj occurs in the
exponent of (39). Partially integrating, this zj has to be
differentiated as well. As µ(x) has the property (66) we
find

∫
dnx µ(x)f(x)(xj∂jg(x))

→ −
∫

dnx µ(x)(xj∂jf(x))g(x). (67)

Expanding the exponent in (39) and using (67), (65) can
be verified.

An integral with a measure µ(x) satisfying (66) has the
additional property:

∫
dnx µ(x) (f(x) � g(x)) =

∫
dnx µ(x) f(x)g(x). (68)

For an arbitrary number of functions multiplied with
the �-product we can cyclically permute the functions un-
der the integral
∫

dnx µ (f1�f2�· · ·�fk) =
∫

dnx µ (fk�f1�f2�· · ·�fk−1).

(69)
Thus, any such function can be brought to the left or right
hand side of the product. For a variation of some linear
combination of such products we always can bring the func-
tion to be varied to one side and then vary it:

δ

δg(x)

∫
dnx µ f �g�h =

δ

δg(x)

∫
dnx µ g(h�f) = µ h�f.

(70)

Hermitean differential operators

We shall call a differential operator O hermitean if
∫

dnx µ f̄ �Og =
∫

dnx µ Of � g. (71)

It is easy to see that the operators i∂∗
i or iD∗

µ are not
hermitean by this definition of hermiticity, though they
are by the algebraic definition (32).

Let us first have a look at the differential operator ∂∗
i

as given in (42). Due to the property (66) of µ there is no
problem in partially integrating ∂n. We have

∫
dnx µ f̄ � (∂∗

i g)

=
∫

dnx µ f̄ (∂∗
i g) =

∫
dnx µ

e−ia∂n − 1
−ia∂n

f̄ ∂ig

= −
∫

dnx µ ∂∗
i f g −

∫
dnx ∂iµ

eia∂n − 1
ia∂n

f g. (72)

This is quite similar to the case of polar coordinates in
ordinary spacetime where i ∂

∂r is not hermitean due to the
measure r2dr, but i

(
∂
∂r +

1
r

)
is hermitean. It is tempting

to try a similar strategy here. We first define ρi, which is
a logarithmic derivative of µ:

ρi =
∂iµ

2µ
. (73)

It inherits from µ the following properties:

xl∂lρi = −ρi and ∂nρi = 0. (74)

Adding ρi to ∂i renders a derivative i∂̃∗
i :

i∂̃∗
i = i(∂i + ρi)

eia∂n − 1
ia∂n

. (75)

This i∂̃∗
i is hermitean in the sense of (71):

∫
dnx µ f̄ i(∂i + ρi)

eia∂n − 1
ia∂n

g
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=
∫

dnx µ i(∂i + ρi)
eia∂n − 1
ia∂n

f g. (76)

The same strategy works for D∗
µ:

D∗
i −→ D̃∗

i = (∂i + ρi)
e−ia∂n − 1

−ia∂n
,

D∗
n −→ D̃∗

n =
1

ia∂2
n

(∂k + ρk)(∂k + ρk)(cos(a∂n)− 1)

+
1
a
sin(a∂n). (77)

These iD̃∗
µ are hermitean in the sense of (71).

The substitution

i∂i −→ i(∂i + ρi) =: πi (78)

does not change the canonical commutation relations,
[
xj , xk

]
= 0, [i∂i, i∂l] = 0,

[
i∂i, x

j
]
= iδj

i , (79)

which implies
[
xj , xk

]
= 0, [πi, πl] = 0,

[
πi, x

j
]
= iδj

i , (80)

and vice versa. This can be seen by making use of the
properties (74) of ρi.

Thus, replacing i∂i by πi does not change the algebraic
properties of the differential operators. This suggests one
to introduce M̃∗rs and Ñ∗l as well. These operators will
satisfy the same commutation relations as M∗rs, N∗l, ∂∗

µ

and D∗
µ. In the sense of (71) the operators iM̃∗rs will be

hermitean, iÑ∗l not.
A proper action for a spinor field ψ̃ would be

S =
∫

dnx µ ψ̃ � (iγλD̃∗
λ −m)ψ̃. (81)

By varying with respect to ψ̃ we obtain

µ(iγλD̃∗
λ −m)ψ̃ = 0. (82)

Guided by the example of polar coordinates we compute

D̃∗
i µ

α = µα(∂i + (2α+ 1)ρi)
eia∂n − 1
ia∂n

, (83)

and similar for D̃∗
n. If we choose α = −1/2 we obtain

D̃∗
λµ

− 1
2 = µ− 1

2D∗
λ. (84)

This suggests the introduction of the field

ψ̃ = µ− 1
2ψ. (85)

The field ψ satisfies the Dirac equation as it was introduced
in (61),

(iγλD∗
λ −m)ψ = 0. (86)

This equation can be derived from the action

S =
∫

dnx ψ(iγλD∗
λ −m)ψ, (87)

which is exactly the action we obtain by substituting ψ̃ →
µ− 1

2ψ in the action (81), after dropping the � from the
integral with the help of µ.
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19. P. Kosiński, P. Maślanka, J. Lukierski, A. Sitarz, General-

ized κ-deformations and deformed relativistic scalar fields
on noncommutative Minkowski space [hep-th/0307038]

20. G. Amelino-Camelia, M. Arzano, Phys. Rev. D 65, 084044
(2002) [hep-th/0105120]

21. J. Wess, B. Zumino, Nucl. Phys. Proc. Suppl. B 18, 302
(1991)

22. S.L. Woronowicz, Commun. Math. Phys. 122, 125 (1989)
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